Recursive Signatures and the Signature Left Near-Ring

J. Conrad

Abstract

A new characterization of the INVERT transform is given for the set of 1-beginning sequences. Its properties are canonized by a familiar algorithm. We construct an additive operation and explore the immediate consequences of the operation and its ability to streamline identity proving. Then we extend the parameters of the function to construct a multiplicative group which is left-distributive over the additive operation, forming a left near-ring. Finally we explore a peculiar algorithm with an interesting representation.

Contents

1 Introduction 2

1.1 The INVERT transform and the signature function 2
1.2 The inverse signature function F^{-1} 2
1.3 Antidiagonal summation and x 3
1.4 Aerated sequences . 3
1.5 Iterated signature function . 4

2 Signature Addition 4

2.1 Convolution of 1-beginning sequences 4
2.2 Internal applications . 4

3 Signature Convolution 5

3.1 Parameterized antidiagonal summation 5
3.2 Right and left inverses . 6
3.3 The signature left near-ring . 7
3.4 Aerated signature convolution 8

4 Signatures and Cantor’s diagonal argument 8

4.1 A peculiar matrix representation 8
4.2 Transforming signatures . 9
4.3 Explaining the vertical identity 10
4.4 Explaining the antidiagonal identity 11
4.5 A further generalization . 11
1 Introduction

1.1 The INVERT transform and the signature function

In Bernstein & Sloane’s Some Canonical Sequences of Integers, the INVERT transform of a sequence \(a\) is the sequence \(b\) which satisfies

\[
1 + \sum_{n=1}^{\infty} b_n x^n = \frac{1}{1 - \sum_{n=1}^{\infty} a_n x^n}
\]

As formal power series over \(\mathbb{R}[[x]]\) this is simply

\[
1 + bx = \frac{1}{1 - ax}
\]

By this algorithm we may define a function \(F : D \to O\) where \(D\) is the set of sequences and \(O\) is the set of sequences which take the form \(1 + bx\) (the "one-beginning" sequences). Though the name INVERT is a useful mnemonic for this formula, there is a recursive algorithm which computes this transform more quickly for a sequence \(d \in D\) by

\[
F_d(0) = 1 \quad F_d(n) = \sum_{k=1}^{n} F_d(n-k) \cdot d_{k-1}
\]

1.2 The inverse signature function \(F^{-1}\)

We can compute its inverse \(F^{-1} : O \to D\) by solving for \(d\) in terms of \(F_d\):

\[
F_d(n) = \sum_{k=1}^{n} F_d(n-k) \cdot d_{k-1}
\]

\[
F_d(n) = F_d(0) \cdot d_{n-1} + \sum_{k=1}^{n-1} F_d(x-k) \cdot d_{k-1}
\]

\[
F_d(n) = d_{n-1} + \sum_{k=1}^{n-1} F_d(n-k) \cdot d_{k-1}
\]

\[
d_{n-1} = F_d(n) - \sum_{k=1}^{n-1} F_d(n-k) \cdot d_{k-1}
\]
From this, substituting F_d^{-1} in place of d and increasing the index yields

$$F_d^{-1}(n) = d_{n+1} - \sum_{k=1}^{n} d_{n-k} \cdot F_d^{-1}(k-1) \tag{5}$$

With this new structure, INVERT is a less intuitive name. For this reason, I have elected to refer to this treatment as the **recursive signature function** or simply the signature function for short.

1.3 Antidiagonal summation and x

It is well known that summation along the diagonals of Pascal’s Triangle yields the Fibonacci numbers. This relationship has been explored in further detail by Hoggatt Jr & Bicknell (see *Diagonal Sums of Generalized Pascal Triangles*). In general, we may select a polynomial d and sum along the n-th diagonal to yield

$$F_d(n) = \sum_{k=0}^{n} d_k^{n-k} \tag{6}$$

Additionally, we may describe F_d as an infinite sum. To do this, we define the signature $x = \{0, 1\}$. Then the signature function is also computed by

$$F_d = \sum_{k=0}^{\infty} (dx)^k, \quad F_d(n) = \sum_{k=0}^{n} (dx)^k_n \tag{7}$$

We may also use Eq. (8) to yield a convenient memoized formula:

$$(F_a \otimes F_b)(n) = F_a(n) + \sum_{k=1}^{n} F_a F_b(n - k) \cdot b_{k-1} \tag{8}$$

1.4 Aerated sequences

For each d, we may describe an aeration A_d where

$$A_d^n(an) = d_n \tag{9}$$

This can transform $[1,1]$ to $[1,0,1]$, $[1,2,1]$ to $[1,0,2,0,0,1]$, etc. Then

$$\sum_{k=0}^{n} d_k^{m-ak} = F_{A_d^m}^n \tag{10}$$

1.5 Iterated signature function

The iteration of the signature function is given by

$$F_d^{(g)} = F_d^{(g-1)}.$$
2 Signature Addition

2.1 Convolution of 1-beginning sequences

The convolution of two sequences a and b is given by

$$ab_n = \sum_{k=0}^{n} a_{n-k} b_k = \sum_{k=0}^{n} b_{n-k} a_k$$ \hspace{1cm} (11)

In the set of 1-beginning sequences O, convolution is a closed operation. This means that we may describe a homomorphism

$$F_a \otimes F_b = F(a \oplus b)$$ \hspace{1cm} (12)

for a binary operation $\oplus : D \times D \rightarrow D$ where D is the set of integer sequences. By (2), we have

$$F_a \otimes F_b = \frac{1}{(1 - ax)(1 - bx)} = \frac{1}{1 - ax - bx + abx^2}$$ \hspace{1cm} (13)

and thus

$$a \oplus b = F^{-1}(F_a \otimes F_b) = a + b - abx$$ \hspace{1cm} (14)

To find an inverse, we solve $a + b - abx = 0$. If we factor out b, we may substitute the reciprocal of F_a for $(1 - ax)$ to find that

$$b = -a F_a$$ \hspace{1cm} (15)

In addition to this inverse, note that

$$a \oplus F_a = a + 1 \Rightarrow a \oplus nF_a = a + n$$ \hspace{1cm} (16)

This describes an isomorphism to integer addition with identity 0, but is easily extended to the reals and complex numbers.

2.2 Internal applications

The information given by this group can help us quickly solve problems when they are portrayed in terms of their signatures. For example, we have that

$$F^{-1}(1 - dx) = F^{-1}\left(\frac{1}{F_d}\right) = 0 \oplus d^{-1} = -dF_d$$ \hspace{1cm} (17)

or conversely

$$F^{-1}(1 + dx) = dF_{-d}$$ \hspace{1cm} (18)

Through this, we can quickly solve a more complex problem symbolically without relying on the explicit algorithm:

$$F^{-1}(1 + aF_b x) = (aF_b) F_{-aF_b} = aF_{b \oplus -aF_b} = aF_{b-a}$$ \hspace{1cm} (19)
When \(a = 1 \), we have
\[
F^{-1}(1 + F_b x) = F_{b-1}
\] (20)
but we can substitute \(F_0 \) for 1, and reach the same solution in an albeit round-about way:
\[
F^{-1}(1 + F_b F_0 x) = F_b F_{0-F_b} = F_{b \oplus -F_b} = F_{b-1}
\] (21)
Another roundabout solution to this form of problem takes advantage of an almost distributive identity:
\[
a \oplus (b - c) = a + a \oplus b - a \oplus c
\] (22)
Which is used to solve \(F^{-1}(1 + F_a F_b x) \):
\[
F^{-1}(1 + F_a F_b x) = F_a F_{b-F_a} = F_{a \oplus (b-F_a)} = F_{a+a \oplus b-a \oplus F_a} = F_{a+a \oplus b-(a+1)} = F_{a \oplus b-1}
\] (23)
This isn’t the best way to solve this problem, but it showcases the versatility of this construction. A simpler solution is given more succinctly by
\[
F^{-1}(1 + F_a F_b x) = F^{-1}(1 + F_a \oplus b x) = F_{a \oplus b-1}
\] (24)

3 Signature Convolution

3.1 Parameterized antidiagonal summation

If we elect to treat each term of antidiagonal summation as the product of itself and 1, then we can rephrase it in terms of the signature function as
\[
\sum_{k=0}^{n} d_k^{n-k} \cdot F_1(n - k) = F_d(n)
\] (25)
From this, we can experiment with alternative signatures to 1. Using 0, for example, yields
\[
\sum_{k=0}^{n} d_k^{n-k} \cdot F_0(n - k) = F_0(n)
\] (26)
And with 2 we get
\[
\sum_{k=0}^{n} d_k^{n-k} \cdot F_2(n - k) = F_{2d}(n)
\] (27)
And finally with \(p \) we get
\[
\sum_{k=0}^{n} d_k^{n-k} \cdot F_p(n - k) = F_{pd}(n)
\] (28)
With this we have multiplicative qualities akin to scalar multiplication, and nullification by the identity of signature addition. By describing this transformation as a binary operation \(\circ : D \times D \to D \), we can focus on the signature of
the solution rather than the entire solution. Thus we define this operation as
the satisfaction of \(F_{a \circ b} \)
\[
F_{a \circ b}(n) = \sum_{k=0}^{n} a_k^{n-k} \cdot F_b(n - k)
\]
which as a series is
\[
F_{a \circ b} = \sum_{k=0}^{\infty} (ax)^k \cdot F_b(k)
\]
Finally, a formula for the operation itself is given by
\[
a \circ b = \sum_{k=0}^{\infty} a^{k+1} x^k b_k
\]
with each value of the sequence given by
\[
(a \circ b)(n) = \sum_{k=0}^{n} a^k b_{n-k}
\]
We also have a curious identity in
\[
d \circ F_g = dF_{dog}
\]
3.2 Right and left inverses
With a bit of manipulation (left as an exercise, but solved in the same way as
Eq (5)) we can derive an inverse which computes either a or b in terms of \(a \circ b \).
First, we have the left inverse which computes a left operand, denoted \(\setminus \):
\[
(a \setminus b)_n = \frac{a_n - \sum_{k=0}^{n-1} (a \setminus b)^{k+1} b_k}{b_0}
\]
Next, we have the right inverse which computes a right operand, denoted \(\div \):
\[
(a \div b)_n = \frac{a_n - \sum_{k=0}^{n-1} b^{k+1} (a \div b)_k}{b_0^{n+1}}
\]
Because each inverse is unique, we can conclude that \(\circ \) is not commutative.
Furthermore, we may compare it to deconvolution, the inverse of convolution:
\[
(a \div b)_n = \frac{a_n - \sum_{k=0}^{n-1} b_{n-k} \cdot (a \div b)_k}{b_0}
\]
With convolution as an ansatz, this new operation will be referred to as signature convolution.
3.3 The signature left near-ring

For the system \((D, \oplus, 0, \circ, 1)\) to satisfy the near-ring axioms, it must meet the following three conditions:

- \(D\) is a group under the additive operation \(\oplus\)
- \(D\) is a semigroup under the multiplicative operation \(\circ\)
- Multiplication distributes on either the right or left

The only property of this system which has not been proven is distributivity. Left-distributivity can be proven by the assumed equality:

\[
\begin{align*}
a \circ (b \oplus c) &= (a \circ b) \oplus (a \circ c) \\
a \circ b + a \circ c - a \circ bcx &= a \circ b + a \circ c - (a \circ b)(a \circ c)x \\
a \circ bcx &= (a \circ b)(a \circ c)x
\end{align*}
\]

\[
\sum_{k=0}^{\infty} a^{k+1} x^k b c x^k = (\sum_{k=0}^{\infty} a^{k+1} x^k b_k) (\sum_{k=0}^{\infty} a^{k+1} x^k c_k) x
\]

\[
a \sum_{k=0}^{\infty} (a x)^k b c x^k = a^2 x (\sum_{k=0}^{\infty} (a x)^k b c_k)
\]

\[
\sum_{k=0}^{\infty} (a x)^k b c x^k = ax (\sum_{k=0}^{\infty} (a x)^k b c_k)
\]

\[
\sum_{k=0}^{\infty} (a x)^k b c x^k = \sum_{k=0}^{\infty} (a x)^{k+1} b c_k
\]

\[
\sum_{k=0}^{\infty} (a x)^k b c x^k = \sum_{k=0}^{\infty} (a x)^{k+1} b c_k
\]

\[
\sum_{k=0}^{\infty} (a x)^{k+1} b c_k = \sum_{k=0}^{\infty} (a x)^{k+1} b c_k
\]

It follows that its right inverse right-distributes:

\[
a \circ b = d \quad a \circ c = e \quad a \circ (b \oplus c) = d \oplus e \quad \Rightarrow \quad (d \oplus e)/a = d/a \oplus e/a = b \oplus c \quad (37)
\]

Right-distributivity and left inverse distributivity can be disproven by any number of random test cases. There are conditions where signature convolution appears to commute, but such cases are easily explained via its associativity and factorization. Take for example

\[
[1, 1] \circ [1, 2, 2, 1] = [1, 1] \circ [1, 1] \circ [1, 1] = [1, 2, 2, 1] \circ [1, 1] \quad (38)
\]

With left-distributivity, signature addition and convolution together form a left near-ring over the integer sequences. This can form a left near-field as its inverse commutes and signature convolution forms a group under the rationals,
reals, and complex numbers. This may also be enumerated by factorization, by observing that
\[a^{(x)} \circ a^{(y)} = a^{(x+1)} \circ a^{(y-1)} = a^{(x-1)} \circ a^{(y+1)} \]
(39)

where the parenthetical exponents are the signature power of the sequence. Then for \(x = y = 0 \) we get
\[a^{(0)} \circ a^{(0)} = a^{(1)} \circ a^{(-1)} = a^{(-1)} \circ a^{(1)} \]
(40)

which satisfies the last of the near-field axioms.

3.4 Aerated signature convolution

We can combine the process of signature convolution with signature aeration for the following identity:
\[n \sum_{k=0}^n d_{kn-ak} \cdot F_g(n-ak) = F_\infty \sum_{k=0}^\infty A_{a^k+n-ax^k} \]
(41)

4 Signatures and Cantor’s diagonal argument

4.1 A peculiar matrix representation

Though we have seen the near-ring of signatures used to solve internal problems, it was originally motivated by a peculiar representation of Cantor’s diagonal argument as a power series. It begins with an infinite set, whose cardinality is \(\sigma \), which we conjecture to be a “complete” set of the base-\(b \) real numbers. By the diagonal argument, it is always possible to define at least one element which must be real but is not present in the set. We add this set of ”absent” real numbers, and include it as the second element of the series. This process may be repeated indefinitely, but by induction will never yield all real numbers.

I chose to represent this recursively as
\[C(0) = \sigma \quad C(n) = C(n-1) + b^{C(n-1)} \quad \lim_{n \to \infty} C(n) < \aleph_1 \]
(42)

Next, we take the finite difference of this function, \(C' \), and we construct a matrix which satisfies
\[\begin{array}{ccccccc}
1 & & & & & & \\
1 & 1 & & & & & \\
1 & 1 & 1 & & & & \\
1 & 1 & 1 & 1 & & & \\
\vdots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\end{array} \\
M(0,0) = 1 \quad M(n,y) = p : b^k = C'(n) \]
(43)
There is an interesting equivalence between the rows of this matrix and the base-b logarithm of C'; if we state that

$$b < \sigma \implies \log_b \sigma = \sigma$$ \hfill (44)

then it is true that

$$\sum_{k=0}^{n-1} M(n, k) \cdot C'(k) = \log_b(C'(n))$$ \hfill (45)

We may take this a step further, and define a linear logarithm-like function, which would allow us to express iteration of this pseudologarithm as matrix powers (assume that each of these matrices is padded with zeroes to make matrix multiplication valid):

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 4 & 7 \\ 1 & 2 & 4 & 7 \\ 1 & 2 & 4 & 7 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 4 & 8 \\ 1 & 2 & 4 & 8 \\ 1 & 2 & 4 & 8 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$ \hfill (46)

This process is similar to the one exhibited by Mats Granvik and Gary Adamson (See The invert transform, Bell numbers, Pascal triangle...), in which they compute the Bell numbers by the powers of a modified Pascal’s Triangle. In this case, however, we will add a final step and produce a sequence from the partial sums of the remaining column of M. This yields

$$\sum_{k=0}^{n} M^k(k, 0) = F_2(n)$$ \hfill (47)

4.2 Transforming signatures

We may define a signature-based recursive function C_d, and compute it as

$$C_d(0) = \sigma \quad C_d(n) = C_d(n - 1) + b \sum_{k=1}^{n} C'_d(n - k) \cdot \sum_{t=0}^{k-1} d_t$$ \hfill (48)
where C'_d is the finite difference of C_d. Then the matrix M_d is given

$$M_d(0, 0) = 1 \quad M_d(n, y) = \sum_{k=0}^{n-y-1} d_k$$

and its summation is

$$\sum_{k=0}^{n} M_d^k(k, 0) = F_{d+1}(n)$$

More curious still, an antidiagonal summation algorithm exists such that

$$\sum_{k=0}^{n} M_d^{n-k}(k, 0) = F_{dx+1}(n)$$

4.3 Explaining the vertical identity

Originally, the matrix is defined

$$M_d(0, 0) = 1 \quad M_d(n, y) = \sum_{k=0}^{n-y-1} d_k = dF_1(n - y - 1)$$

Note the substitution of summation for convolution by F_1. From this construction and matrix multiplication, we have the original identity

$$\sum_{k=0}^{n} M_d^k(k, 0) = F_{1+d}(n)$$

However, with a slight alteration to the matrix:

$$M'_d(0, 0) = 1 \quad M'_d(n, y) = d_{n-y-1}$$

Then vertical summation instead gives

$$\sum_{k=0}^{n} M'_d^k(k, 0) = F_d(n)$$

The relationship between M and M' is given by

$$M_d = M'_dF_1$$

By again substituting convolution in place of summation, we have

$$\sum_{k=0}^{n} M_d^k(k, 0) = \sum_{k=0}^{n} M'_d^k(k, 0) = F_1 F_dF_1(n) = F_{1+dF_1}(n) = F_{1+d}(n)$$
4.4 Explaining the antidiagonal identity

The original antidiagonal identity of the matrix is

\[
\sum_{k=0}^{n} M_d^{n-k}(k, 0) = F_{1+dx}(n)
\]

(58)

However, with \(M'\), this identity becomes

\[
\sum_{k=0}^{n} M'_d^{n-k}(k, 0) = F_{1+dx-dx^2}(n)
\]

(59)

While the signature term may be written in terms of signature addition as \(1 \oplus dx\), we are more interested in writing it as

\[1 + dx(1 - x) = 1 + \frac{dx}{F_1}\]

(60)

Given the relationship between \(M\) and \(M'\), this quickly explains the original antidiagonal identity:

\[
\sum_{k=0}^{n} M_d^{n-k}(k, 0) = \sum_{k=0}^{n} M'_d^{n-k}(k, 0) = F_{1+dx} - dx_{\mathbb{F}_1}(n) = F_{1+dx}(n)
\]

(61)

4.5 A further generalization

While the construction \(M\) is interesting, it can be viewed as a single case of a more general construction. Let \(G\) be a set of signatures \([g_1, g_2, ..., g_p]\). Then let \(S_d\) be defined as follows:

\[
S_0^d(0, 0) = 1 \quad S_0^d(1, 0) = d_0 - 1
\]

\[
S_0^d(n > 1, 0) = d_{n-y-1}
\]

\[
S_d^p(n, y) = \sum_{k=0}^{n} S_{d-1}^{p-1}(k, y) \cdot F_{g_k}(n-k)
\]

Then we have the identity

\[
\sum_{k=0}^{n} (S_d^p)^{k}(k, 0) = F_{d+\bigoplus_{k=1}^{p} g_k}(n)
\]

(62)

This equals \(F_{d+1}\) when \(G = [1]\).

There is also a generalization for antidiagonal summation in

\[
\sum_{k=0}^{n} (S_d^p)^{n-k}(k, 0) = F^{(2)}_{d+\bigoplus_{k=1}^{p} g_k}(n)
\]

(63)

which equals \(F_{dx+1}\) when \(G = [1]\).
5 Miscellaneous

5.1 Interesting constructed triangles

\[K_d(n, y \leq n) = F_d(y) \sum_{k=0}^{n} K_d(n - ak, k) = F_{1 \oplus x^* A_d^{+1}}(n) \] (64)

\[Q_d(n, y \leq n) = F_d(n - y) \sum_{k=0}^{n} Q_d(n - ak, k) = F_{d \oplus x^*}(n) \] (65)

\[G_d(n, y \leq n) = F_d^{y+1}(n - y) \sum_{k=0}^{n} G_d(n - ak, k) = F_{d+ x^*}(n) \] (66)

\[B_d(n, y \leq n) = F_d^{n-y+1}(y) \sum_{k=0}^{n} B_d(n - ak, k) = F_{1+x^* A_d^{+1}}(n) \] (67)

\[P_d(n, y \leq n) = d^n(y - n) \sum_{k=0}^{n} P_d(n - ak, k) = F_{d \oplus x^*}(n) \] (68)

\[P'_d(n, y \leq n) = d^{y+1}(n - y) \sum_{k=0}^{n} P'_d(n - ak, k) = dF_{d \oplus x^*} \] (69)

\[J_d(n, y \leq n) = d^{n-y}(y) \sum_{k=0}^{n} J_d(n - ak, k) = F_{A_d^{+1}}(n) \] (70)

\[J'_d(n, y \leq n) = d^{n-y+1}(y) \sum_{k=0}^{n} J'_d(n - ak, k) = A_d^{+1}F_{A_d^{+1}} \] (71)

6 Code

Code which implements the signature left near-ring may be viewed on GitHub.
7 References

