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Abstract

The mechanics of the positional numeral system are reviewed. Its definition is
gradually expanded, first to the factorial base, then to Fibonacci coding, to the
recursive signature function, and finally to any increasing one-beginning natural
sequence. Then various edge cases are explored where the sequence base displays
some irregular property.
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1 Basic Counting Methods

1.1 Positional numeral system

We take for granted how useful our system of counting is. The positional
numeral system is a way of cleanly representing any integer using a base b
and a digitation {n0, n1, ..., np}. In our base-ten system, we separate numbers
by ones, tens, hundreds, thousands, and so on, each represented by a different
digit. Take, for example, the number 1482. We can partition this number like
so:

1482 = 1000 + 400 + 80 + 2 (1)

What is happening here is each digit from right to left is multiplied by progres-
sively higher powers of ten. We can expand this equation further to get:

1482 = 1 · 103 + 4 · 102 + 8 · 101 + 2 · 100 (2)

Formally, the positional numeration of a set Nb = {b, {n0, n1, ..., np}} is given
by

p∑
k=0

nkb
k (3)

Let’s try counting in a different base. Let’s try base-3, or ternary. Take a look
at this table:

bk → 9 3 1
N10

↓
1 1
2 2
3 1 0
4 1 1
5 1 2
6 2 0
7 2 1
8 2 2
9 1 0 0
10 1 0 1
11 1 0 2
12 1 1 0
13 1 1 1
14 1 1 2
15 1 2 0
16 1 2 1
17 1 2 2
18 2 0 0
19 2 0 1
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Note that each number’s base-ten representation (N10) is computed by multi-
plying each digit by its corresponding power of 3. For example, the number
1123 is computed by:

1123 = 1 · 9 + 1 · 3 + 2 · 1 = 9 + 3 + 2 = 14 (4)

Note that we are implicitly using base-ten to represent numbers whose base is
not explicitly labelled.

1.2 Digit resolution

Digit resolution is the process of carrying a number to the next digit, then
resetting the lower number to 0. In base-ten, this occurs when counting from 9
to 10; in base-2, from 1 to 10; and in octal, from 7 to 10. Some examples can
be viewed below.

22 → 102

1202 → 2002 → 10002

88 → 108

848 → 1048

C12 → 1012

BC712 → C0712 → 100712

1.3 Factorial base system

What if we could substitute a function in place of bk? Well, it turns out one such
function, the factorial function, can do just that. Take a look at the following
table:
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k! → 24 6 2 1 1
N10

↓
1 1 0
2 1 0 0
3 1 1 0
4 2 0 0
5 2 1 0
6 1 0 0 0
7 1 0 1 0
8 1 1 0 0
9 1 1 1 0
10 1 2 0 0
11 1 2 1 0
12 2 0 0 0
13 2 0 1 0
14 2 1 0 0
15 2 1 1 0
16 2 2 0 0
17 2 2 1 0
18 3 0 0 0
19 3 0 1 0
20 3 1 0 0
21 3 1 1 0
22 3 2 0 0
23 3 2 1 0
24 1 0 0 0 0

Instead of the power function bk, each digit is equivalent to nkk!.
Notice, for example, that going from 23 to 24 in factorial involves the following
resolution:

3210! + 1 = 3211! → 3220! → 3300! → 4000! → 10000! (5)

1.4 Fibonacci coding

What if instead of base-10 or the factorial base, we used a different function as
the base? In this case, let’s use the Fibonacci numbers, given by

F (0) = F (1) = 1 F (n) = F (n− 1) + F (n− 2) (6)
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F (k) → 13 8 5 3 2 1 1
N10

↓
1 1 0
2 1 0 0
3 1 0 0 0
4 1 0 1 0
5 1 0 0 0 0
6 1 0 0 1 0
7 1 0 1 0 0
8 1 0 0 0 0 0
9 1 0 0 0 1 0
10 1 0 0 1 0 0
11 1 0 1 0 0 0
12 1 0 1 0 1 0
13 1 0 0 0 0 0 0

This is similar to counting in binary, except it resolves the digit pattern 1 to 10
and 11 to 100. Observe what happens when counting from 12 to 13:

101010F + 1 = 101011F → 101100F → 110000F → 1000000F (7)

We can use this table to calculate the base-10 value of any number on the table.
For example, the value of 1010F is calculated by

1 · 3 + 0 · 2 + 1 · 1 + 0 · 1 = 3 + 1 = 4 (8)

The value of 101000F is calculated by

1 · 8 + 0 · 5 + 1 · 3 + 0 · 2 + 0 · 1 + 0 · 1 = 8 + 3 = 11 (9)

2 Alternate Counting Methods

2.1 The signature function

To understand what is happening in the Fibonacci coding, let’s look at a gener-
alization of the Fibonacci function called the recursive signature function.
The recursive signature function (or just the signature function for short) is
defined as

Fd(0) = 1 Fd(n) =

n−1∑
k=0

Fd(n− 1− k)dk (10)

For example, F{1,1} is the Fibonacci numbers and F{2,1} = {1, 2, 5, 12, 29, 70, ...}
is the Lucas numbers. The signature function reveals an exciting way to count
similar to Fibonacci coding but for an arbitrary sequence d.
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2.2 Signature numeration

Let’s attempt to use the sequence F{1,1,2} to create a ”coding” like the Fibonacci
coding. First, the sequence is given by

F{1,1,2} = {1, 1, 2, 5, 9, 18, ...} (11)

Observe the coding given below:

F{1,1,2}(k) → 18 9 5 2 1 1
N10

↓
1 1 0
2 1 0 0
3 1 1 0
4 1 1 1
5 1 0 0 0
6 1 0 1 0
7 1 1 0 0
8 1 1 1 0
9 1 0 0 0 0
10 1 0 0 1 0
11 1 0 1 0 0
12 1 0 1 1 0
13 1 0 1 1 1
14 1 1 0 0 0
15 1 1 0 1 0
16 1 1 1 0 0
17 1 1 1 1 0
18 1 0 0 0 0 0
19 1 0 0 0 1 0
20 1 0 0 1 0 0
21 1 0 0 1 1 0
22 1 0 0 1 1 1
23 1 0 1 0 0 0

Like Fibonacci coding, this is resolving digits, but according to the sequence
{1, 1, 2} rather than {1, 1}. For example, counting from 4 to 5 is done by

111{1,1,2} + 1 = 112{1,1,2} → 1000{1,1,2}

whereas counting from 8 to 9 is done by

1110{1,1,2} + 1 = 1111{1,1,2} → 1120{1,1,2} → 10000{1,1,2}

In general, the signature numeration of Nd = {d, {n0, n1, ..., np}} is given by

p∑
k=0

nkFd(k) (12)

6



For example, Fibonacci coding is the case where d = {1, 1}. Some more exam-
ples of this numeration:

F{1,1,2} = {1, 1, 2, 5, 9, ...} 11010{1,1,2} = 1·9+1·5+0·2+1·1+0·1 = 9+5+1 = 15
(13)

F{2,1} = {1, 2, 5, 12, 29, ...} 2011{2,1} = 2·12+0·5+1·2+1·1 = 24+2+1 = 27
(14)

F{2,3} = {1, 2, 7, 20, 61, ...} 1221{2,3} = 1·20+2·7+2·2+1·1 = 20+14+4+1 = 39
(15)

2.3 Arbitrary sequence numeration

2.3.1 Conditions for sequence as a base

Instead of Fd, we can select an arbitrary discrete function f which meets the
following conditions:

f(0) = 1

f(n) ∈ N

f(n) >= f(n− 1)

In other words, any increasing one-beginning natural sequence may be
used as a base.

These sequences are a subset of the signature function, whose range is all one-
beginning sequences, so we can refer to these sequences by their signature when
convenient.

2.3.2 Base-{2, 0, -1}

For example, we can count in base-{2, 0,−1}. The sequence F{2,0,−1} is given
by:

F{2,0,−1} = {1, 2, 4, 7, 12, 20, ...} (16)

Then we can count in this base like so:
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F{2,0,−1}(k) → 20 12 7 4 2 1
N10

↓
1 1
2 1 0
3 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 0 0 0
8 1 0 0 1
9 1 0 1 0
10 1 0 1 1
11 1 1 0 0
12 1 0 0 0 0
13 1 0 0 0 1
14 1 0 0 1 0
15 1 0 0 1 1
16 1 0 1 0 0
17 1 0 1 0 1
18 1 0 1 1 0
19 1 1 0 0 0
20 1 0 0 0 0 0

Notice the bolded sections which showcase the identity

F2,0,−1(n) = F2,0,−1(n− 1) + F2,0,−1(n− 2) + 1 (17)

2.4 Edge cases

Let’s take a look at some special cases where counting follows some less intuitive
rules.

2.4.1 Base-1

Base-1 is fairly simple: every digit either does not exist or is a 1, so we have

N1 =

p∑
k=0

1 = p + 1 (18)

For example, 1111 is 4, 1111111 is 7, and 11 is 2.

2.4.2 Sequences which converge

Suppose we select the sequence f = {1, 4, 7, 8, 8, 8, ...} to serve as a base for
numeration. Observe the behavior of counting in this base:
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f(k) → 8 8 8 7 4 1
N10

↓
1 1
2 2
3 3
4 1 0
5 1 1
6 1 2
7 1 0 0
8 1 0 0 0
9 1 0 0 1
10 1 0 0 2
11 1 0 0 3
12 1 0 1 0
13 1 0 1 1
14 1 0 1 2
15 1 1 0 0
16 1 1 0 0 0
17 1 1 0 0 1
18 1 1 0 0 2
19 1 1 0 0 3
20 1 1 0 1 0
21 1 1 0 1 1
22 1 1 0 1 2
23 1 1 1 0 0
24 1 1 1 0 0 0

Notice that, similar to base-1, the digits with a value of 8 can only have a value
of 1. This still satisfies the condition that

Nf =

p∑
k=0

nkf(k) (19)

where, for example, 11000f = 16, 1010f = 12, etc. This behavior occurs for any
f which converges.

2.4.3 Sequences where f(n) = f(n-1) for some n

Suppose we select the sequence f = {1, 3, 7, 7, 13, ...} to serve as a base for
numeration. Observe the behavior of counting in this base:
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f(k) → 13 7 7 3 1
N10

↓
1 1
2 2
3 1 0
4 1 1
5 1 2
6 1 3
7 1 0 0 0
8 1 0 0 1
9 1 0 0 2
10 1 0 1 0
11 1 0 1 1
12 1 0 1 2
13 1 0 0 0 0
14 1 0 0 0 1
15 1 0 0 0 2
16 1 0 0 1 0
17 1 0 0 1 1
18 1 0 0 1 2
19 1 0 0 1 3
20 1 1 0 0 0

Note that the digit resolves past the first 7 to the ”highest” 7. This behavior
would be similar for f = {1, 3, 7, 7, 7, 13, ...} or f = {1, 3, 7, 7, ..., 7, 13, ...}.

3 Conclusion

I hope that I have given this topic a proper treatment, even though there are
some weaknesses to this method. For example, radix points do not work for
sequences, so we are restricted to integer representations.

Still, I think this method is interesting in its own right. Because the space
of increasing one-beginning natural sequences is uncountably infinite, we may
now access an uncountably infinite number of positional numeral systems with
sequences as the base. Perhaps these new systems will show that our ”normal”
way of counting is a bit less special, but is part of something a lot more beautiful.
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