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Abstract

A new characterization of the INVERT transform is given for the set of 1-
beginning sequences. Its properties are canonized by a familiar algorithm. We
construct an additive operation and explore the immediate consequences of the
operation and its ability to streamline identity proving. Then we extend the
parameters of the function to construct a multiplicative group which is left-
distributive over the additive operation, forming a left near-ring.
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1 Introduction

1.1 The INVERT transform and the signature function

In Bernstein & Sloane’s Some Canonical Sequences of Integers, the INVERT
transform of a sequence a is the sequence b which satisfies

1 +

∞∑
n=1

bnx
n =

1

1−
∞∑

n=1

anx
n

(1)

As formal power series over R[[x]] this is simply

1 + bx =
1

1− ax
(2)

By this algorithm we may define a function F : D → O where D is the set
of sequences and O is the set of sequences which take the form 1 + bx (the
”one-beginning” sequences). Though the name INVERT is a useful mnemonic
for this formula, there is a recursive algorithm which computes this transform
more quickly for a sequence d ∈ D by

Fd(0) = 1 Fd(n) =

n∑
k=1

Fd(n− k) · dk−1 (3)

1.2 The inverse signature function F−1

We can compute its inverse F−1 : O → D by solving for d in terms of Fd:

Fd(n) =

n∑
k=1

Fd(n− k) · dk−1

Fd(n) = Fd(0) · dn−1 +

n−1∑
k=1

Fd(x− k) · dk−1

Fd(n) = dn−1 +

n−1∑
k=1

Fd(n− k) · dk−1

dn−1 = Fd(n)−
n−1∑
k=1

Fd(n− k) · dk−1 (5)

From this, substituting F−1
d in place of d and increasing the index yields

F−1
d (n) = dn+1 −

n∑
k=1

dn−k · F−1
d (k − 1) (5)

With this new structure, INVERT is a less intuitive name. For this reason, I
have elected to refer to this treatment as the recursive signature function
or simply the signature function for short.
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1.3 Antidiagonal summation and x

It is well known that summation along the diagonals of Pascal’s Triangle yields
the Fibonacci numbers. This relationship has been explored in further detail by
Hoggatt Jr & Bicknell (see Diagonal Sums of Generalized Pascal Triangles). In
general, we may select a polynomial d and sum along the n-th diagonal to yield

Fd(n) =

n∑
k=0

dn−k
k (6)

Additionally, we may describe Fd as an infinite sum. To do this, we define the
signature x = [0, 1]. Then the signature function is also computed by

Fd =
∞∑
k=0

(dx)k Fd(n) =

n∑
k=0

(dx)kn (7)

There is also a convenient memoized formula for the convolution of two signature
function sequences:

(Fa ⊗ Fb)(n) = Fa(n) +

n∑
k=1

FaFb(n− k) · bk−1 (8)

1.4 Aerated sequences

For each d, we may describe an aeration Ad where

Aa
d(an) = dn (9)

This can transform [1,1] to [1,0,1], [1,2,1] to [1,0,0,2,0,0,1], etc. Then

n∑
k=0

dn−ak
k = FAa

d
(n) (10)

Note that a = 1 is the ”identity” aeration.

1.5 Iterated signature function

The iteration of the signature function is given by F
(g)
d = F

F
(g−1)
d

.

2 Signature Addition

2.1 Convolution of 1-beginning sequences

The convolution of two sequences a and b is given by

abn =

n∑
k=0

an−kbk =

n∑
k=0

bn−kak (11)
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In the set of 1-beginning sequences O, convolution is a closed operation. This
means that we may describe a homomorphism

Fa ⊗ Fb = F (a⊕ b) (12)

for a binary operation ⊕ : D ×D → D where D is the set of integer sequences.
By the definition of the INVERT transform, we have

Fa ⊗ Fb =
1

(1− ax)(1− bx)
=

1

1− ax− bx+ abx2
(13)

and thus
a⊕ b = F−1(Fa ⊗ Fb) = a+ b− abx (14)

To find an inverse, we solve a+b−abx = 0. If we factor out b, we may substitute
the reciprocal of Fa for (1− ax) to find that

b = −aFa (15)

In addition to this inverse, note that

a⊕ Fa = a+ 1 ⇒ a⊕ nFa = a+ n (16)

This describes an isomorphism to integer addition with identity 0, but is easily
extended to the reals and complex numbers.

2.2 Internal applications

The information given by this group can help us quickly solve problems when
they are portrayed in terms of their signatures. For example, we have that

F−1(1− dx) = F−1(
1

Fd
) = 0⊕ d−1 = −dFd (17)

or conversely
F−1(1 + dx) = dF−d (18)

Through this, we can quickly solve a more complex problem symbolically with-
out relying on the explicit algorithm:

F−1(1 + aFbx) = (aFb)F−aFb
= aFb⊕−aFb

= aFb−a (19)

When a = 1, we have
F−1(1 + Fbx) = Fb−1 (20)

but we can substitute F0 for 1, and reach the same solution in an albeit round-
about way:

F−1(1 + FbF0x) = FbF0−Fb
= Fb⊕−Fb

= Fb−1 (21)
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Another roundabout solution to this form of problem takes advantage of an
almost distributive identity:

a⊕ (b− c) = a+ a⊕ b− a⊕ c (22)

Which is used to solve F−1(1 + FaFbx):

F−1(1+FaFbx) = FaFb−Fa
= Fa⊕(b−Fa) = Fa+a⊕b−a⊕Fa

= Fa+a⊕b−(a+1) = Fa⊕b−1

(23)
This isn’t the best way to solve this problem, but it showcases the versatility of
this construction. The simplest solution is given succinctly by

F−1(1 + FaFbx) = F−1(1 + Fa⊕bx) = Fa⊕b−1 (24)

3 Signature Convolution

3.1 Parameterized antidiagonal summation

If we elect to treat each term of antidiagonal summation as the product of itself
and 1, then we can rephrase it in terms of the signature function as

n∑
k=0

dn−k
k · F1(n− k) = Fd(n) (25)

From this, we can experiment with alternative signatures to 1. Using 0, for
example, yields

n∑
k=0

dn−k
k · F0(n− k) = F0(n) (26)

And with 2 we get
n∑

k=0

dn−k
k · F2(n− k) = F2d(n) (27)

And finally with p we get

n∑
k=0

dn−k
k · Fp(n− k) = Fpd(n) (28)

With this we have multiplicative qualities akin to scalar multiplication, and
nullification by the identity of signature addition. By describing this transfor-
mation as a binary operation ◦ : D ×D → D, we can focus on the signature of
the solution rather than the entire solution. Thus we define this operation as
the satisfaction of

Fa◦b(n) =

n∑
k=0

an−k
k · Fb(n− k) (29)
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which as a series is

Fa◦b =

∞∑
k=0

(ax)k · Fb(k) (30)

Finally, a formula for the operation itself is given by

a ◦ b =
∞∑
k=0

ak+1xkbk (31)

with each value of the sequence given by

(a ◦ b)(n) =
n∑

k=0

ak+1
n−kbk (32)

We also have a curious identity in

d ◦ Fg = dFd◦g (33)

3.2 Right and left inverses

With a bit of manipulation (solved in the same way as Eq (5)) we can derive
an inverse which computes either a or b in terms of a ◦ b. First, we have the left
inverse which computes a left operand, denoted \:

(a\b)n =

an −
n−1∑
k=0

(a\b)k+1
n−kbk

b0
(34)

Next, we have the right inverse which computes a right operand, denoted /:

(a/b)n =

an −
n−1∑
k=0

bk+1
n−k(a/b)k

bn+1
0

(35)

Because each inverse is unique, we can conclude that ◦ is not commutative.
Furthermore, we may compare it to deconvolution, the inverse of convolution:

(a÷ b)n =

an −
n−1∑
k=0

bn−k · (a÷ b)k

b0
(36)

With convolution as an ansatz, this new operation will be referred to as signa-
ture convolution.
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3.3 The signature left near-ring

For the system (D,⊕, 0, ◦, 1) to satisfy the near-ring axioms, it must meet the
following three conditions:

� D is a group under the additive operation ⊕

� D is a semigroup under the multiplicative operation ◦

� Multiplication distributes on either the right or left

The only property of this system which has not been proven is distributivity.
Left-distributivity can be proven by the assumed equality:

a ◦ (b⊕ c) = (a ◦ b)⊕ (a ◦ c)
a ◦ b+ a ◦ c− a ◦ bcx = a ◦ b+ a ◦ c− (a ◦ b)(a ◦ c)x

a ◦ bcx = (a ◦ b)(a ◦ c)x
∞∑
k=0

ak+1xkbcxk = (

∞∑
k=0

ak+1xkbk)(

∞∑
k=0

ak+1xkck)x

a

∞∑
k=0

(ax)kbcxk = a2x(

∞∑
k=0

(ax)kbck)

∞∑
k=0

(ax)kbcxk = ax(

∞∑
k=0

(ax)kbck)

∞∑
k=0

(ax)kbcxk =

∞∑
k=0

(ax)k+1bck

∞∑
k=0

(ax)kbck−1 =

∞∑
k=0

(ax)k+1bck

∞∑
k=0

(ax)k+1bck =

∞∑
k=0

(ax)k+1bck

It follows that its right inverse right-distributes:

a◦b = d a◦c = e a◦(b⊕c) = d⊕e ⇒ (d⊕e)/a = d/a⊕e/a = b⊕c (37)

Right-distributivity and left inverse distributivity can be disproven by any num-
ber of random test cases. There are conditions where signature convolution ap-
pears to commute, but such cases are easily explained via its associativity and
factorization. Take for example

[1, 1] ◦ [1, 2, 2, 1] = [1, 1] ◦ [1, 1] ◦ [1, 1] = [1, 2, 2, 1] ◦ [1, 1] (38)

With left-distributivity, signature addition and convolution together form a left
near-ring over the integer sequences. This can form a left near-field as its in-
verse commutes and signature convolution forms a group under the rationals,
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reals, and complex numbers. This may also be enumerated by factorization, by
observing that

a(x) ◦ a(y) = a(x+1) ◦ a(y−1) = a(x−1) ◦ a(y+1) (39)

where the parenthetical exponents are the signature power of the sequence.
Then for x = y = 0 we get

a(0) ◦ a(0) = a(1) ◦ a(−1) = a(−1) ◦ a(1) (40)

which satisfies the last of the near-field axioms.

4 Code

Code which implements the signature left near-ring may be viewed on GitHub.
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